

February 2018

CLEARED FOR OPEN PUBLICATION
February 14, 2018

DEPARTMENT OF DEFENSE
OFFICE OF PREPUBLICATION AND SECURITY REVIEW

This report is a product of the Defense Science Board (DSB). The DSB is a Federal Advisory

Committee established to provide independent advice to the Secretary of Defense. Statements,

opinions, conclusions, and recommendations in this report do not necessarily represent the

official position of the Department of Defense.

MEMORANDUM FOR UNDER SECRETARY OF DEFENSE FOR RESEARCH AND

ENGINEERING

SUBJECT: Final Report of the Defense Science Board (DSB) Task Force on the Design and

Acquisition of Software for Defense Systems

 I am pleased to forward the final report of the DSB Task Force on the Design and Acquisition

of Software for Defense Systems, chaired by Dr. William LaPlante and Dr. Robert Wisnieff.

 The Task Force has made seven recommendations on how to improve software acquisition in

defense systems. A base recommendation underlying all others is to emphasize the importance of

the software factory and to incorporate the software factory as a key evaluation criterion in the

source selection process. Next, the Department of Defense (DoD) and its defense industrial base

partners need to adopt continuous iterative development best practices. The study recommends

DoD adopt best practices on risk reduction and metrics in formal program acquisition strategies.

Software strategies must be better incorporated in current and legacy programs from development,

production, and sustainment. The Task Force recommends ways to improve the software and

acquisition workforce, in both software development expertise and the broader functional

acquisition work force. Next, software is immortal and contracts must be framed to allow for

software sustainment. Finally, the Task Force recommends further research into machine learning

and the implementation of an independent verification and validation process for machine learning

and autonomy in software systems.

 Software is a crucial and growing part of weapons systems and the Department needs to be

able to sustain immortal software indefinitely. The Task Force concluded that the Department of

Defense would benefit from the implementation of continuous iterative development best practices

as software becomes an increasingly important part of defense systems.

 I concur with the Task Forceôs conclusions and recommend you forward the report to the

Secretary of Defense.

 Dr. Craig Fields

 Chairman, DSB

THIS PAGE LEFT INTENTIONALLY BLANK

MEMORANDUM TO THE CHAIRMAN, DEFENSE SCIENCE BOARD

SUBJECT: Final Report of the Defense Science Board Task Force on the Design and Acquisition

of Software for Defense Systems

Attached is the final report of the Defense Science Board Task Force on the Design and Acquisition

of Software for Defense Systems. The Task Force was formed to determine whether the iterative

development practices in the commercial world are applicable to the development and sustainment

of software for the Department of Defense (DoD). The study Terms of Reference stipulated the

Task Force should:

¶ examine the current state of DoD software acquisition and recommend actions for the DoD

and its suppliers;

¶ consider development, test, and evaluation of learning systems;

¶ contrast and compare DoD and commercial software development and determine what

commercial software development capabilities military systems should embrace;

¶ identify impediments in DoD requirements, contracting, and program management and how

they might be removed;

¶ determine if ñAgileò software techniques are being used effectively and identify

impediments;

¶ determine if the commercial concept of a minimum viable product should be adopted by the

DoD;

¶ determine best management approaches to achieve rapid and effective software upgrades,

including an analysis of modular, open architecture;

¶ look at lessons learned from recent software challenges (e.g., OCX, F-35); and

¶ provide recommendations to ensure rapid adoption of cognitive capabilities as they mature.

The Task Force assessed best practices from commercial industry as well as successes within the

DoD. Commercial embrace of iterative development has benefited bottom lines and cost, schedule,

and testing performance, while the Department and its defense industrial base partners are

hampered by bureaucratic practices and an existing government-imposed reward system. The Task

Force concluded that the Department needs to change its internal practices to encourage and

incentivize new practices in its contractor base. The assessment of the Task Force is that the

Department can leverage best practices of iterative development even in its mission critical

software systems.

The Task Force made seven recommendations on how to improve software acquisition in defense

systems. Our base recommendation, which underlies all other recommendations, is the importance

of the software factory ï the efficacy of an offerorôs software factory should be a key evaluation

criterion in the source selection process for software. Next, the Department and its defense

industrial base partners need to adopt continuous iterative development best practices (continuing

through sustainment) for software. The Task Force recommends implementing certain best

practices on risk reduction and metrics in formal program acquisition strategies as well as

incorporating better software strategies in current and legacy programs in development,

production, and sustainment. The Task Force further recommends workforce actions, both in

software development expertise and in broader functional acquisition. The Task Force

acknowledges that software is immortal, and therefore, the Task Force provides recommendations

for software sustainment. Finally, the Task Force recommends further study of machine learning,

including the implementation of an independent verification and validation process for machine

learning and autonomy in software systems.

Software is a crucial and growing part of weapons systems and the national security mission, and

the DoD must address its ability to build and sustain software continuously and indefinitely.

Overall, the Task Force concludes that the Department can improve its methods of acquiring,

building, and incentivizing software in defense systems and will greatly benefit from altering some

of its acquisition practices and adopting continuous iterative development best practices.

Dr. William LaPlante Dr. Robert Wisnieff

Co-Chair Co-Chair

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems Table of Contents | i

Table of Contents

Executive Summary ..1

1. Introduction ...3

1.1 The Importance of Software in Defense Systems ... 3

DoD Software Growth ... 3

DoD Software Risk Assessment ... 4

1.2 Silicon Valley Baedeker: Theories of Software Development ... 5

Waterfall Development ... 6

Agile Development .. 6

Agile DevOps ... 6

Iterative Development: Agile, Spins, and Spirals .. 6

2. Finding: Continuous Iterative Development for the Department of Defense7

2.1 DoD Software Processes ... 7

2.2 Commercial Software Processes ... 7

2.3 Software Factory ... 9

2.4 Addressing Cyber .. 10

2.5 Importance of Architecture .. 11

2.6 The Right Conditions for Iterative Development in Defense Systems 11

2.7 The Case For and Against Iterative Development for DoD Systems 14

3. Finding: Commercial, the DoD, and Its Partners: Case Studies .. 17

3.1 Differences and Similarities of DoD and Commercial Software Development................. 17

3.2 Defense Prime Contractors State of Play .. 18

4. Finding: Acquisition Strategies and Contracting Approaches .. 20

4.1 Software Acquisition Misalignment .. 20

4.2 Defense Acquisition Could Use Continuous Iterative Development in Many Types of

Programs .. 22

Ongoing Small-scale Major Development Programs (Hybrid Model) 22

Ongoing Large-scale Major Development Programs .. 22

New Programs ... 22

Legacy Programs ... 23

5. Recommendations ... 24

Recommendation 1: Software Factory ... 24

Recommendation 2: Continuous Iterative Development ... 24

Recommendation 3: Risk Reduction and Metrics for New Programs 25

Recommendations 4: Current and Legacy Programs in Development, Production, and

Sustainment.. 25

Recommendation 5: Workforce ... 26

Recommendation 6: Software is Immortal ς Software Sustainment 27

Recommendation 7: Independent Verification and Validation for Machine Learning 27

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems Table of Contents | ii

Appendix A: Task Force Terms of Reference .. A-1

Appendix B: Task Force Membership .. B-1

Appendix C: Recommendations .. C-1

Appendix D: Briefings Received .. D-1

Appendix E: Software Factory Source Selection Criteria Suggestions E-1

Appendix F: Acronyms and Abbreviated Terms .. F-1

Appendix G: Glossary ... G-1

Appendix H: Index .. H-1

List of Figures

Figure 1. DoD Software Complexity and Growth: Explosive Growth of Source Lines of Code

(SLOC) in Avionics Software ... 4

Figure 2. Software Risk Assessed by DoD Program Office .. 5

Figure 3. Theories of Software Development ... 5

Figure 4. DoD Software Process (Waterfall) .. 7

Figure 5. Commercial Software Process (Continuous Iterative Development) 8

Figure 6. Software Factory .. 9

Figure 7. Addressing Cyber in the Software Factory ... 10

Figure 8. Harvard Business Review: Embracing Agile .. 12

Figure 9. Favorable Conditions for Iterative Development on the F-35 13

Figure 10. Unfavorable Conditions for Iterative Development on the F-35 13

Figure 11. Dyba and Dingsoyr Meta-survey .. 15

Figure E-1. Software Factory in Source Selection ... E-1

 List of Boxes

Box 1: Facebook and Google Best Practices .. 17

Box 2: Iterative Development with Fixed Price: KC-46A Tanker ... 18

Box 3: Iterative Development for the National Security Mission: SpaceX 19

.ƻȄ пΥ bŀǘƛƻƴŀƭ {ŜŎǳǊƛǘȅ !ƎŜƴŎȅ Iŀǎ {ǳŎŎŜǎǎŦǳƭƭȅ aƻǾŜŘ ǘƻ !ƎƛƭŜ Χ²ƛǘƘ [ƛƳƛtations 19

Box 5: National Reconnaissance Office Best Practice: Database of Historic Cost Actuals for

Software Development ς Waterfall or Agile ... 22

Box 6: Example of Legacy Program Moving to Iterative Development: Tomahawk 23

file:///C:/Users/mcveighb/Documents/Poole_DSB/Poole_DSB_TaskForces/DSB_Software%20Aquisition%20(SWA)/DSB_SWA_Report/DSB_SWA_Report_v.12.docx%23_Toc506977222
file:///C:/Users/mcveighb/Documents/Poole_DSB/Poole_DSB_TaskForces/DSB_Software%20Aquisition%20(SWA)/DSB_SWA_Report/DSB_SWA_Report_v.12.docx%23_Toc506977223
file:///C:/Users/mcveighb/Documents/Poole_DSB/Poole_DSB_TaskForces/DSB_Software%20Aquisition%20(SWA)/DSB_SWA_Report/DSB_SWA_Report_v.12.docx%23_Toc506977224
file:///C:/Users/mcveighb/Documents/Poole_DSB/Poole_DSB_TaskForces/DSB_Software%20Aquisition%20(SWA)/DSB_SWA_Report/DSB_SWA_Report_v.12.docx%23_Toc506977225
file:///C:/Users/mcveighb/Documents/Poole_DSB/Poole_DSB_TaskForces/DSB_Software%20Aquisition%20(SWA)/DSB_SWA_Report/DSB_SWA_Report_v.12.docx%23_Toc506977226
file:///C:/Users/mcveighb/Documents/Poole_DSB/Poole_DSB_TaskForces/DSB_Software%20Aquisition%20(SWA)/DSB_SWA_Report/DSB_SWA_Report_v.12.docx%23_Toc506977226
file:///C:/Users/mcveighb/Documents/Poole_DSB/Poole_DSB_TaskForces/DSB_Software%20Aquisition%20(SWA)/DSB_SWA_Report/DSB_SWA_Report_v.12.docx%23_Toc506977227

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems Executive Summary | 1

Executive Summary

The goal of the Defense Science Board (DSB) Task Force on Design and Acquisition of Software for

Defense Systems was to determine whether iterative software development practices evolved in

the commercial world are applicable to the development and sustainment of software for the

Department of Defense (DoD).

Software has become one of the most important components of our NŀǘƛƻƴΩǎ ǿŜŀǇƻƴǎ ǎȅǎǘŜƳǎΣ

and it continues to grow in importance. Software defines the way our systems see, communicate,

and operate in combat. Design and acquisition decisions at the beginning of the software

development process frequently have far-reaching and long-term effects that impact the weapon

ǎȅǎǘŜƳΩǎ ŜŦŦƛŎŀŎȅ ƻƴ the battlefield and its ability to adapt to changing requirements.

Software development in the commercial world has undergone significant change in the last 15

years, while development of software for defense systems has continued to use techniques

developed in the 1970s through the 1990s. Traditional ά²ŀǘŜǊŦŀƭƭέ software development

practices (i.e., determining a functional specification, writing the software, and testing the

software to the functional specification) have evolved in the commercial world into an iterative

process, called άAgileέ or άcontinuous iterative development,έ where a team develops software

in smaller blocks that can be incrementally evaluated by a user community. This incremental

approach allows updates and improvements to be rapidly incorporated into the software; in many

cases, updates are made every day. The DoD, however, still largely buys and develops software

developed using the slower traditional Waterfall approach that was mostly abandoned by

commercial companies years ago.

Modern commercial software development best practices use software factories, which are a set

of software tools that programmers use to write their code, confirm it meets style and other

requirements, collaborate with other members of the programming team, and automatically

build, test, and document their progress. This allows teams of programmers to do iterative

development with frequent feedback from users. Additionally, a number of new tools and

techniques are being utilized by the commercial sector, including:

 automation at scale;

 continuous development throughout the life of the product;

 increased and cheaper computing power;

 static, dynamic, and fuzz testing techniques, which have allowed substantial automated

software testing; and

 open source, which leverages a larger community of developers to create reusable

components and development tools.

These advances allow software production and sustainment to be done rapidly and continuously,

enabling greater flexibility as requirements change. Harnessing these techniques and practices

has yielded results in many commercial areas, from mobile and web technologies to banking,

finance, and trade.

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems Executive Summary | 2

The DoD can leverage ǘƻŘŀȅΩǎ commercial development best practices to its advantage, including

on its weapons systems. Doing so will enable the DoD to move from a capabilities-based

acquisition model to a threat-based acquisition model. Making this transition is necessary if the

United States is to maintain its technological superiority and counter rapidly growing adversary

capabilities. Our adversaries are acquiring capabilities not previously anticipated and are doing so

at a pace that now challenges U.S. technological superiority. The DoD needs to return to a

modernized version of threat-based assessments. The United States must have the ability to

quickly respond to adversary advancements and update our systems accordingly. Rapid and

continuous software development will be essential to achieving this outcome.

The defense contractor base has not adopted many of the proven commercial sector software

development techniques due to DoD culture, internal practices, and a government approach to

contracting that disincentivizes their adoption. The DoD develops software and associated

contracting based on upfront detailed systems requirements and specification for the entire

completed system, an approach that is inadequate ǘƻ ƳŜŜǘ ǘƻŘŀȅΩǎ ŎƘŀƭƭŜƴƎŜǎΦ The Department

must change the structure of its contracts to incentivize best practices in its contractor base in

order to take advantage of these modern software development practices.

Problems associated with software development continue to plague major DoD acquisition

programs. This results in long delays in fielding, significant cost overruns, and, in some cases,

program cancellation. The problems appear to be caused by the same software development

issues that have occurred in programs over the last two decades. The Task Force strongly believes

greater adoption of continuous iterative development and its associated best practices will result

in significantly improved acquisition performance. The assessment of the Task Force is that an

iterative approach to software development and sustainment is applicable to the DoD and should

be adopted as quickly as possible.

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems | 3

1. Introduction

1.1 The Importance of Software in Defense Systems

Software is a crucial and growing part of weapons systems and the national security mission.

While recognized as central to enterprise business systems and related information technology

(IT) services, the role software plays in enabling and enhancing weapons systems often goes

underappreciated.

Today, many of the capabilities provided by our weapons systems are derived from the software

of the system, not the hardware. This shift from hardware-enabled capabilities to software-

enabled capabilities is increasing quickly. As a 2017 paper published by the Institute for Defense

Analyses notes, άThe Department of Defense is experiencing an explosive increase in its demand

for software-ƛƳǇƭŜƳŜƴǘŜŘ ŦŜŀǘǳǊŜǎ ƛƴ ǿŜŀǇƻƴ ǎȅǎǘŜƳǎΧƛƴ ǘƘŜ ƳŜŀƴǘƛƳŜΣ ŘŜŦŜƴǎŜ ǎƻŦǘǿŀǊŜ

productivity and industrial base capacity have not been growing as quickly.έ1

In new weapons systems, software has become a significant part of the development and

qualification process. Improving functionality and security can be delayed or even prevented by

the inability to do the necessary testing; maintaining the complex testing infrastructure (i.e., both

human and computing) is a growing issue.

Software does not only affect new weapons systems under development. Legacy systems, such

as Tomahawk, F-16, and F-18, continue beyond design life due largely to improvements via

software upgrades. While original development of these legacy systems used traditional software

development practices, current upgrades have begun to employ iterative development practices,

including for basic sustainment.

Unlike hardware, software never dies. Laying the groundwork to allow software improvement

over the life of a weapons system is a strategic imperative. Utilizing development practices that

enable continuous upgrade of capability ensures software can be adapted to threats and

opportunities unanticipated during the specification of the system. The DoD must lay the

groundwork now for software to meet the demands of the future.

DoD Software Growth

One method of estimating the complexity, cost and schedule, and overall centrality of software is

to count the source lines of code (SLOC), often used as a basis of cost estimates.2 This method has

limitations ς different languages and programming systems result in different SLOC counts, and

industry no longer considers this technique credible. Even so, SLOC provides insight into a

ǎƻŦǘǿŀǊŜ ǎȅǎǘŜƳΩǎ ǎƛȊŜ ŀƴŘ ǘƘŜ {[h/Σ ŦƻǊ Ƴŀƴȅ ǿŜŀǇƻƴǎ ǎȅǎǘŜƳǎΣ Ƙŀǎ ƎǊƻǿƴ ŘǊŀƳŀǘƛŎŀƭƭȅ ƻǾŜǊ ǘƘŜ

1 5ŀǾƛŘ aΦ ¢ŀǘŜΣ ά{ƻŦǘǿŀǊŜ tǊƻŘǳŎǘƛǾƛǘȅ ¢ǊŜƴŘǎ ŀƴŘ LǎǎǳŜǎ ό/ƻƴŦŜǊŜƴŎŜ tŀǇŜǊύΣέ Institute for Defense
Analyses (March 2017): iii.
2 This procedural software cost estimation model is referred to as the Constructive Cost Model (COCOMO).

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems | 4

last four decades. Figure 1 illustrates this trend for avionics software. This growth in SLOC shows

how critical software is to the capabilities of advanced weapons systems.

Figure 1. DoD Software Complexity and Growth: Explosive Growth of Source Lines of Code (SLOC)

in Avionics Software3

DoD Software Risk Assessment

In the acquisition of new systems, software drives program risk for approximately 60 percent of

programs (shown in Figure 2). Risks come in many forms. When building systems with new

capabilities, it is not possible to anticipate all of the challenges until hands-on experience is

obtained, not only in terms of basic operations but also for concepts of operation and tactics,

techniques, and procedures. Unexpected complications can arise from unanticipated

interdependencies within the software itself, often driven by the underlying architecture. A

current DoD acquisition best practice is to reduce project risk by specifying the function of the

software in detail at the beginning of a program. However, when such a system is tested,

additional requirements typically are identified, thus requiring substantial effort to implement.

3 The information in this chart was compiled from Christian Hagen, Jeff Sorenson, Steven Hurt, and Dan
Wall, "Software: The Brains Behind U.S. Defense Systems," A.T. Kearney, 2012,
https://www.atkearney.com/documents/10192/247932/SoftwareThe_Brains_Behind_US_Defense_Syste
ms.pdf/69129873-eecc-4ddc-b798-c198a8ff1026. SLOC for F-16 and F-22 are at first operational flight.
SLOC for F-35 Block 2B and 3F plus support software provided by the USD(R&E) office.

https://www.atkearney.com/documents/10192/247932/SoftwareThe_Brains_Behind_US_Defense_Systems.pdf/69129873-eecc-4ddc-b798-c198a8ff1026
https://www.atkearney.com/documents/10192/247932/SoftwareThe_Brains_Behind_US_Defense_Systems.pdf/69129873-eecc-4ddc-b798-c198a8ff1026

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems | 5

Figure 2. Software Risk Assessed by DoD Program Office

1.2 Silicon Valley Baedeker: Theories of Software Development

A number of software theories have evolved over time regarding software development.

Assessing these different theories often leads to heated arguments about the best approach. This

report uses ǘƘŜ ǘŜǊƳ άŎƻƴǘƛƴǳƻǳǎ ƛǘŜǊŀǘƛǾŜ ŘŜǾŜƭƻǇƳŜƴǘέ ǘƻ ŎƘŀǊŀŎǘŜǊƛȊŜ ǘƘŜ ōŜǎǘ ƳŜǘƘƻŘ ŦƻǊ ǘƘŜ

DoD. Below is a Baedeker, or guide, to the various software approaches.

For more definitions of software terms, please see the glossary in Appendix G.

Figure 3. Theories of Software Development4

4 GǊŀǇƘƛŎ ŀŘŀǇǘŜŘ ŦǊƻƳ ¢ƛƳ 5ƛƻǉǳƛƴƻΣ ά5ŜǾhǇǎΥ ¢ǊŀƴǎŦƻǊƳƛƴƎ aƛƭƛǘŀǊȅ !ǇǇƭƛŎŀǘƛƻƴ 5ŜƭƛǾŜǊȅ [ƛŦŜŎȅŎƭŜǎΣέ
Hewlett Packard Enterprise, FedInsider, Intel, 14.

Software assessed among most frequent and most critical challenges,
 driving program risk on ~60% of acquisition programs.

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems | 6

Waterfall Development

The traditional approach to software development is Waterfall development. Waterfall

development begins with writing down the full function specification. It is used to write the

program as well as the tests. When the software passes all of the tests, it is considered finished

and ready for delivery to the user.

Agile Development

Agile developmentΣ ŀƭǎƻ ŎŀƭƭŜŘ άƛǘŜǊŀǘƛǾŜέ ŘŜǾŜƭƻǇƳŜƴǘΣ ōŜƎƛƴǎ ǿƛǘƘ ǘƘŜ ŎǊŜŀǘƛƻƴ ƻŦ ŀ ǎƻŦǘǿŀǊŜ

factory. Development and testing sprints ς a set period of time during which specific work is

completed ς allow a team to do rapid iterations of development, obtain user feedback, and adjust

goals for the next increment. This framework allows for continuous development throughout the

life of the product.

Agile DevOps

DevOps entails running multiple Agile projects simultaneously to develop the next increment of

an application. DevOps requires careful architectural design to avoid unintended complications

by concurrent efforts. In general, this requires carefully defining the module and subsystem

interfaces; thorough testing of interfaces is mandatory.

Iterative Development: Agile, Spins, and Spirals

Iterative development is the ineluctable process imposed by use of a product ς especially a

software product ς that reveals a shortcoming or suggests an improvement. What distinguishes

traditional iterative development from Agile approaches to software design and development is

the velocity and granularity of the iterations. In venerable software production methodology

(Waterfall development), an iteration commences after field deployment and use. New

development approaches (i.e., Agile, spin, spiral) uncover and deal with flaws and opportunities

much earlier in the process, leading to rapid development of a more robust product delivered to

the field.

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems | 7

2. Finding: Continuous Iterative Development for the Department of

Defense

2.1 DoD Software Processes

The standard software development process in the DoD follows the linear path illustrated in

Figure 4: requirements are finalized and documented, schedule and cost is set at the beginning of

the program (often using legacy SLOC-based models), and a preliminary design review is

performed leading up to the release of the development request for proposal (RFP). After

Milestone B and contract award, software is developed using resources determined by estimating

the SLOC of each section of software. Finally, the system is tested prior to release. This approach,

reŦŜǊǊŜŘ ǘƻ ŀǎ ά²ŀǘŜǊŦŀƭƭ ŘŜǾŜƭƻǇƳŜƴǘΣέ dominated all of commercial and defense software

development until the early 2000s.

Figure 4. DoD Software Process (Waterfall)

2.2 Commercial Software Processes

The growth of mobile computing in the 2000s forced commercial organizations to look for ways

to write software without knowing all of the requirements ahead of time while anticipating future

security and testing concerns. To wait for certainty about requirements meant companies losing

their markets. The goal was to find ways to iteratively develop software, extending capability

incrementally over time.

Figure 5 illustrates the cyclical process of continuous iterative development commonly employed

in the commercial sector. Goals and features are identified at the beginning, but requirements

are not strictly set as in the usual DoD process. User feedback is used to establish goals of each

ƛǘŜǊŀǘƛƻƴ όŎŀƭƭŜŘ ŀ άǎǇǊƛƴǘέύ ŀƴŘ ǘƻ ŜǎǘŀōƭƛǎƘ ǘƘŜ ŘŜŦƛƴƛǘƛƻƴ ŀƴŘ ŜȄǇŜŎtations of the minimum viable

product (MVP). The software team writes the software using a highly automated tool chain that

rebuilds the system and tests the resulting changes every night. If issues are found, the developers

make the necessary changes the next day. The continuous development process, which lasts

weeks, delivers an MVP to the user at the end of each iteration. Within the loop, there are nightly

builds and tests, including durable, automated granular, performance, security, and capability

tests that facilitate confidence when changes are subsequently introduced. Problems can be

identified daily. The goal of this process is delivering a series of products that provide enhanced

functionality, facilitating ongoing safe modification, and enabling users to evaluate performance

that drives the next iteration.

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems | 8

Figure 5. Commercial Software Process (Continuous Iterative Development)

The decrease in the cost of computing made this iterative development approach cost-effective.

Previously, it was too expensive to run a computing infrastructure that could build and test the

entire project every night. Large projects would compile the entire software system every six to

nine months, making it more difficult for a programmer to see dependencies or other problems

with the system. This iterative and more automated approach initially was embraced in the mobile

space; its success led to widespread adoption across most areas of the commercial world.

Going from one MVP to another enables spiral development. The lessons learned during an

iteration cycle are used to set key features and changes for the next iteration. Software

architecture is key to enabling this approach and must be designed to allow and account for

changes. Therefore, function must be assigned to modules to enable likely extensions and

evolution. Successful developments become visible in the product while unsuccessful ones are

discarded. Companies often ameliorate the risk of unsuccessful architectures by starting multiple

groups with different architectures and down-selecting when the best architecture is determined,

which is not an easy task.

D E P A R T M E N T O F D E F E N S E | D E F E N S E S C I E N C E B O A R D

DSB Task Force on Design and Acquisition of Software for Defense Systems | 9

2.3 Software Factory

Figure 6. Software Factory

Underlying iterative development is the software factory, illustrated in Figure 6. Low-cost, cloud-

based computing is used to assemble a set of tools (see Appendix E for an example list of

applications) that enable the developers, users, and management to work together on a daily

tempo. The goal is to ensure the code meets requirements by building and testing the application

automatically every day and feeding back any issues to the developer responsible for the code. A

source code repository archives current and past versions of the application while each developer

works on a local copy of the code. After attaining a stable version, it is uploaded to the repository

along with extensive tests and test data, and documentation listing the added features and

resolved issues. In most organizations, code is peer reviewed prior to the upload. Peer review is

especially useful for new members of the team, allowing them to learn the nuances of the

software system conventions.

Once the code is uploaded, a style checker ensures there are no violations of coding conventions

and then the software system is built. For interpreted languages such as Python or Swift, the build

process involves static testing (i.e., no undeclared variable, no variables being called after the

variable has been discarded) and syntax checking. For compiled languages, such as C, a

compilation of the source code to executable code is involved. Individual modules then go

through unit testing, which validates resolution of previously identified issues as well as

compatibility with required functionality. In a new project, the first software written is often the

unit tests and, in fact, comprehensive unit tests can offer the best insight into function. The full

build is dynamically tested by executing use-scenarios identified as edge cases. Fuzz testing is also

used τ giving random inputs of all allowed values τ to look for instances where unexpected

